• 咨询热线:400-888-5135

高光谱成像仪怎么分类?高光谱成像仪有哪些类型?

时间:2023-07-25 点击:506次

高光谱成像仪怎么分类?高光谱成像仪作为成像技术和光谱技术相融合的综合性仪器,可以按照工作波段、分光方式、扫描方式及工作高度等不同特性分为不同的类型。本文对高光谱成像仪的分类及类型做了详细的介绍,对高光谱知识感兴趣的朋友可以了解一下!

高光谱成像仪

按工作波段不同分类:

根据成像光谱仪的工作波段进行分类,可以分为紫外、可见、近红外、中红外和远红外等几个波段,且不同工作波段的应用也各不相同。如紫外波段一般用于观测星体(初始星体发出辐射剥离周围原子的电子)、电晕放电等方面;可见光波段为人眼视网膜可接波段,一般用于植被、水色监测及探测研究;红外波段为热温差成像,一般用于地温反演、目标打击毁伤效果评估、军事侦察等方面。


按分光方式不同分类:

根据分光元件的分光方式及数据重构理论,光谱成像技术主要分为色散型、干涉型、滤光片型和计算成像型。

色散型成像光谱仪分光技术主要包括棱镜分光和光栅分光两种;滤光片型成像光谱仪技术采用滤光片为分光元件,其种类繁多,如滤光片轮、滤光片阵列、线性渐变滤光片、光楔滤光片等,另外还有两种经典的调谐型滤光器,声光可调谐滤光片(AOTF)和液晶可调谐滤光片(LCTF)。这两种技术都是直接探测目标的空间信息和光谱信息,不需进行其他的数据变换重构,但仅可获得二维数据(光谱维和一维空间信息),需要另一个维度的扫描才能够获得第二维空间信息并形成数据立方。

干涉型成像光谱技术也称作傅里叶变换光谱成像技术,按照探测模式可分为时间调制、空间调制和时空调制三类,主要利用的是波动光学的相干成像原理,获得探测目标的干涉图像后,需再经过一次傅里叶逆变换才能够得到光谱信息及空间图像。此种方式获得的也是二维数据,同样需要另一个维度的扫描才能够获得数据立方。

计算成像光谱技术主要包括计算层析型、光场成像型和孔径编码成像型等,能够直接获取三维数据立方,一般是将探测目标的三维信息投影到二维探测器上,并通过对应重构方法获得空间信息和光谱信息。


按扫描方式的不同分类:

根据获取三维数据立方的扫描方式可分为摆扫式、推扫式和凝视式。

摆扫式光谱成像系统采用线阵探测器,通过沿轨和穿轨两个方向扫描获取完整的二维空间信息,其中穿轨方向一般利用扫描镜实现。此种扫描方式在瞬时视场即可获得目标点的线阵光谱维信息,一般应用于机载平台,视场覆盖面积广、定标方便、数据信息稳定性好,但曝光时间短,进入探测器的能量少,所以信噪比低。

摆扫式

推扫式光谱成像系统采用的是面阵探测器,且探测器自身完成垂直于飞行方向扫描,获得空间中一维线视场的空间信息,并利用飞行器飞行运动完成沿轨方向扫描实现二维空间信息的获取,同时线视场的光谱信息在面阵探测器的第二维获得。此种扫描方式相对于摆扫式在信噪比方面大幅提高,无需机械扫描,适用于色散和干涉型成像光谱仪。

推扫式

凝视式光谱成像系统采用面阵探测器,可随飞行器运动时对固定窗口目标成像,采用滤光的方式分离并获取不同波段的图像信息,再将不同波段的图像堆叠成“数据立方”,只适用于可调谐滤光片型和新型的快照式成像光谱仪。

凝视式

按工作高度不同分类:

根据高光谱成像仪的工作高度,可分为中低空、中空和中高空相机。工作高度决定了前置望远成像系统的焦距范围。

中低空作业的工作高度在二百米到四千米之间,焦距一般较短,通常不超过300mm,由于光学系统的工作高度较低,载机自身较容易受到攻击,所以侦察类高光谱相机主要用于目标的打击效果分析评估。

中空作业的工作高度在三千米到一万米之间,焦距范围为300~1000mm,成像方式通常为倾斜或者垂直式,主要应用于侦察地面或海面上的固定目标和活动目标。

中高空作业的工作高度在八千米到二万五千米之间,焦距范围为1000~3000mm,成像方式通常为倾斜式,主要应用于高空远距离侦察地面或海面上的目标。

其中,中空和中高空作业的航空相机由于工作高度较高、对地面的目标成像时距离远,所以载机自身生存能力强,且应用领域更广。

QQ咨询

在线咨询真诚为您提供专业解答服务

咨询热线

400-888-5135
7*24小时服务热线

返回顶部