• 咨询热线:400-888-5135

高光谱成像技术有什么优点?高光谱成像技术光谱图像怎么分析?

时间:2023-09-12 点击:309次

高光谱成像技术作为一种新型的多维成像技术,可以准确的获取样本的光谱信息和图像信息,对样本进行定性与定量的分析,具有“图谱合一”的特点。目前,被广泛的应用于精细农业、生物医药等行业。那么,高光谱成像技术有什么优点?高光谱成像技术光谱图像怎么分析?本文对高光谱成像技术的优势及高光谱图像数据的分析方法做了介绍。

高光谱成像仪

什么是高光谱成像技术?

作为一种将传统的空间成像分析技术和光谱分析技术融为一体的光学检验技术,高光谱成像技术拥有更高光谱分辨率、更广光谱波段范围、更丰富数据信息。高光谱图像不仅仅能实现在成百上千个连续的可见光、红外、近红外等广泛的光谱区域成像,亦能记录目标的空间位置信息。在选定的波长范围中捕获图像中所有点的光谱信息、所有波段的图像信息以及待测目标相应的辐射强度,空间位置信息与光谱图中的特征峰信息结合对待测目标进行识别、鉴定、分类。

高光谱图所提供的大量信息及其相关性为进一步的检验分析提供可行性。针对所得的光谱图进行研究分析,可根据检验要求及其谱图特征,选取合适的数据定标类型如辐射定标、光谱定标、空间几何定标。


高光谱成像技术技术的优势:

虽然高光谱成像技术与多光谱技术均是以成像光谱仪检测目标物质的物理性质与化学成分,但高光谱具备较高的纳米级光谱分辨率,是与全色和多色光谱成像相比较的显著优势,与二维图像数据最大的区别则是在显示检材空间位置的同时,保存检材在不同波段下的反射率。在此,可以概括出高光谱图像的优势:

①“信息三合一”,通过高光谱图像得到的三维立体数据,可形象地表征物质辐射强度、空间信息和光谱信息之间的关系,融合了这三种信息后能够得到更佳的研究效果;

②更为丰富的数据信息,多光谱技术只能在几个波段范围捕获光谱信息,而高光谱成像技术以高达0.01数量级的光谱分辨率连续成像;

③谱图连续性,通过成百上千个光谱数完成成像,能从光谱维度读取出连续的光谱曲线。丰富的数据可得到复杂模型对待测物进行识别、鉴定与分类;

④与传统的谱图维度信息相比,高光谱数据维度高,包含的信息量多且随波段数增加而增加,空间位置信息及光谱波段信息相关性高。在图像分析处理方面,与通过调整图像RGB组合相比得到的结果更理想。


高光谱成像技术高光谱图像数据的分析方法:

高光谱图像处理分析方法不胜枚举,在图谱数据处理过程中,有如下基础方法。

1.高光谱图像预处理

高光谱图像因其携带大量的数据信息,增强了技术的检测能力,同时也增大了信息的冗余量,因此在预处理阶段的主要目的即对立体数据进行降维处理。在保存感兴趣特征的同时减少数据信息量,降低处理信息的时长与难度同时增强数据分析的精确度。目前,较为普遍的高光谱图像预处理方法有特征选择和特征提取两种方法。

特征选择是指从最初波段中直接选取有效的特征波段,达到降低数据维度的目的。特征提取是指通过对一个或若干个原始波段的属性关系进行组合变换,得到新的特征属性。光谱信息的冗余量与相关性取决于波段的宽窄度,因而选取最优波段是图像降维度过程的关键要素。实际检验鉴定中常通过多种降维方法交叉结合使用,来达到最佳的检验结果。如基于主成分分析、基于高阶统计量的独立元分析、最小噪声分离变换、傅里叶变换、基于核函数和基于神经网络的非线性特征分析等。

2.数据特征分析

根据检材在光谱图中的不同特性信息反映,选取不同分类模型对不同类别的待测目标进行分类。使用计算机分析处理作为辅助方法,弥补鉴定人员的视觉鉴别传统方法的不足,如最大似然比分类、卷积神经网络分类方法等等。作为机器学习方法之一的监督学习,通过对已知标签的特征进行提取学习,构造训练函数完成对未知样本的分类检验任务,如K近邻法、马氏距离分类、最大似然法、最小距离法、光谱角分类法等等。另一种非监督分类则是直接对光谱信息进行特征提取,统计差别进行分类,如K-均值、ISODATA(迭代自组织数据分析)等。对高光谱图进行数据分析的过程中,通过总体分类精度对分类方法进行评价,选择最有效的分类方法而获得最佳结果。

QQ咨询

在线咨询真诚为您提供专业解答服务

咨询热线

400-888-5135
7*24小时服务热线

返回顶部